
Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

122

Comparative Evaluation and Analysis of Hardware/Software Partitioning

Algorithms for Embedded System

Babangida Jauro Mohammed*1, Hussaini Abatcha Geidam2

*E-mail: jaurobabangida21@gmail.com

1Electrical and Electronics Engineering, Mai Idriss Alooma Polytechnic Geidam, Nigeria

2Electrical and Electronics Engineering, Federal Polytechnic Damaturu, Nigeria

Abstract

Hardware/software partitioning has been considered as one of the most crucial steps in the design of

embedded systems is i.e. deciding which components of the system should be implemented in hardware

and which ones in software. Majority of the hardware/software partitioning problem formulations are

N P-hard, this is the reason why most researchers are focusing on developing efficient heuristic

methods. This paper compare the most popular heuristic methods after which the most simplest and

efficient methods were considered for the design of a combinatorial structure. Two versions of the

partitioning problem were considered, one N P-hard, and one with polynomial time solution. This is to

understand the real cause of complexity in hardware/software partitioning. The heuristic makes use of

problem-specific knowledge, and can thus find high-quality solutions rapidly, and also the polynomial-

time algorithm serves as the basis for a highly efficient novel heuristic for the N P-hard version of the

problem and it was observed after comparison that multi-level algorithm when implemented gives more

efficiency and the different versions when combined supplement each other by eliminating the problems

encountered when each of them act alone.

Key words: Hardware/software partitioning, heuristic, N P-hard, polynomial time solution

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

123

1.0 Introduction

The Hardware/software partitioning algorithms

are tools which help researchers in decision

making as to which function is to be

implemented in hardware and software, to

achieve design goals with regards to

performance, power, size and cost. This part of

the embedded system acts mostly as

coprocessors [1].

The operating system (OS) resource managers

were mostly used by software partitioning to

segments the operating system, which limits the

number of CPUs by creating areas where CPU

resources are allocated to applications within

the same operating system. This is a flexible

way of managing data processing resources

since the CPU capacity can be changed fairly

easily, as additional resource is needed [2]. The

Hardware partitioning on the other hand

segments a server, by taking a single large

server and separating it into distinct small

systems. Each separate system acts as a

physically independent, self-contained server,

with own CPUs, operating system, separate

boot area, memory, input/output subsystem and

network resources [3].

Many algorithms have been implemented by

researchers worldwide to obtain a solution to

hardware and software partitioning problems.

Some implemented single algorithm while

some combined few of the methods to obtain a

hybrid algorithm.

 After review of so many of these algorithms,

this work found that one of the best

combination to make and achieve a better

hybrid is to combine Particle swam

optimization (PSO) algorithm, and Genetic

algorithm (GA) because PSO and GA shared

some similarities. Both of them begin with a

randomized population and each population has

their own fitness value for evaluation. They

update the population and search for the

optimum with random technique. Their

differences been that while PSO has no

evolution operators such as crossover and

mutation GA do have [14]. Also in PSO,

particles update themselves with the internal

velocity and has memory to store the

parameters and is simpler and faster than GA

[12].

PSO algorithm is population-based selection,

where a set of convenient solutions will be

obtained through a set of potential solutions.

Each potential solution in search space will

adjust its movement according to its own

moving experience as well as the moving

experience of other solutions. The solution will

move towards a promising area to get the global

optimum. In short, the purpose of this algorithm

is to find the global optimum of the fitness

function defined in a given area.

GA algorithm is natural-based selection. This

method modifies a population of individual

solutions repeatedly. At each step, GA picked

the individual solution randomly from the

current population to be parents and used them

to produce the child for the next generation. As

the steps keep on repeating, the population will

move towards an optimal solution. There are

three main rules at each step to obtain the next

generation from the parent population, namely

selection rules, crossover rules and mutation

rules [11].

The combination of these two algorithms to

design a hybrid algorithm gives a more or less

optimal solution of a partitioning problem,

because it utilizes the advantages of the two

algorithms and also overcome their

disadvantages. A better results in hardware and

software partitioning problem is thus obtained.

The GA is easy to express in solving a

combinatorial optimization problem and PSO

has fast convergence speed [12]. If both of these

algorithms were combined, it is very obvious

that the execution time and partitioning result of

hybrid algorithm will be improved.

Two types of algorithms were used to

implement the hardware software partitioning.

They are; the exact and the heuristic or

evolutionary methods. The exact method

partitioning algorithms tends to be quite slow

for bigger dimensions of the problem.

Therefore, this research work uses heuristic

method to increase performance while also

reducing the cost of the system.

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

124

2.0 Problem Statement

Partitioning remain a key challenge that affect

embedded system efficiency and optimization.

Partitioning were done manually by the

designers based on their experience in the olden

days [4]. As the embedded system design

increased in its complexity over the years, these

efforts to do partitioning manually become

unrealistic due to the number of components

with different characteristic involved in the

design [2].

Exact algorithms, such as branch-and-bound

and dynamic programming were among the

initial automated partitioning design proposed

by researchers [6, 7]. But they are slow,

heuristic algorithms such as genetic algorithms,

particle swarm optimization and simulated

annealing were then developed. These heuristic

algorithms also have their own limitations [8,

9]. The PSO algorithm tends to back into its

local optimum as the size of the given area is

high and the size of convergence rate is low

during the iteration process. The Genetic

algorithm on the other hand has no guarantee of

finding global maxima and requires a decent

size of population and a large number of

generations to obtain good results. In order to

improve the performance, many hybrid

algorithms were proposed by researchers. This

work proposed a multi-level hybrid and

compare their performances.

3.0 Objectives

a. To evaluate the performance of multi-

level hybrid algorithm in term of number of

iteration to obtain stable cost.

b. To compare the algorithm performance

of the hybrid algorithms based on their levels to

see how the hybrid level affect performance.

4.0 Methodology

A two and three-level hybrid models were

designed using PSO and GA algorithms. They

were used to optimize the performance of an

embedded system by deciding the

implementation of specific application or

function in software or hardware. The number

of iterations to achieve best cost and the time

taking to reach the best cost were examined.

And based on these parameters a comparison

between GA, PSO and hybrid of GA and PSO

were made and also a three-level hybrid model

of GA-GA-PSO is constructed and compared.

In this work GA and PSO were implemented

separately, and then two and three level

algorithms were constructed. In the two level

hybrid GA was implemented followed by PSO.

And in the three level were implemented using

two level successive GA algorithms followed

by a PSO model. Figure 1(a) and (b) shows the

algorithms architecture.

Fig.1. (a) Three level hybrid model architecture (b) two level hybrid model architecture

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

125

GA and PSO models were constructed

individually in MATLAB environment before

combining them into the hybrid model.

GA algorithm imitates the process of natural

selection. The first step in GA algorithm is to

initialize all the populations of solution and

evaluate their fitness after which they will

undergo a crossover and mutation operations.

The fitness for each of these solutions will then

be re-evaluated after crossover and mutation.

By sorting all the solutions according to fitness,

the extra number of solutions with lowest

fitness will be eliminated [15]. The flow chart

of the implemented algorithm is shown in Fig.

2.

Figure 2: GA algorithm flow chart

PSO algorithm is a population based stochastic

optimization technique inspired by social

behaviour of bird flocking or fish schooling.

The best way to illustrate it is by considering a

group of birds searching for food in an area.

They don’t know where the food is but they

know how far the food is. The best strategy to

reach the food is to follow the bird nearest to

the food. PSO is an inspiration from this

scenario [3].

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

126

The PSO model, was obtained by initializing

the populations of solutions and fitness were

evaluated for each solution. The velocity for

each solution was initially set to zero. The

velocity was then updated using equations 1

and 2.

v[i] = (𝑊 ∗ 𝑣[𝑖]) + 𝐶1𝑟1(𝑝𝐵𝑒𝑠𝑡[𝑖] − 𝑥[𝑖]) + 𝐶2𝑟2(𝑔𝐵𝑒𝑠𝑡 − 𝑥[𝑖]) (1)

x[𝑖] = 𝑥[𝑖] + v[i] (2)

Where

v[i] = velocity of particle

 = Damping inertia factor that takes values

downward from 1 to 0 according to the

iteration number. (W = W*𝑤𝑑𝑎𝑚𝑝)

𝐶1 = self-confidence (cognitive) factor

𝑟1 = random numbers between 0 and 1

𝐶2 = swarm confidence (social) factor

𝑟2 = random number between 0 and 1

[𝑖] = current position of particle

𝑝[𝑖] = position vector of best solution that this

particle achieved so far

𝑔𝐵𝑒𝑠𝑡 = best position vector obtained so far by

any particle in the population

The fitness of each of the particles were

evaluated after changing their position and

velocity. 𝑝Best and 𝑔Best were updated

accordingly. These steps were repeated until

maximum iterations were reached. Fig. 3 shows

the PSO flow chart.

 Figure 3: PSO flow chart

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

127

4.2

Multi-Level Hybrid Modelling

To implement the multi-level hybrid models,

GA was implemented followed by PSO in the

two level hybrid, while in the three level hybrid

implementation, two successive GA algorithms

model were constructed followed by a PSO

model. In the two level hybrid, first GA flow

chart was utilized up to extra data elimination

then the set of data was passed over to PSO

algorithm.

In the three level hybrid, the set of data was

send over to the next GA algorithm for another

round of crossover and mutation after data

elimination of the first GA. the data was again

passed through second data elimination of the

second GA algorithm, after which it was passed

over to PSO algorithm. The flow charts of the

two level and three level models were shown in

figure 4(a) and (b) respectively.

Figure 4(a): GA-PSO algorithm flow chart

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

128

Figure 4(b): GA-GA-PSO algorithm flow chart

4.3. Setting of model and choice of Parameters

Binary solutions were used in this work with

hardware node assuming a value of 0 and

software node a value 1. Damping coefficient

was made to decrease in each iteration by a

factor of Wdamp which is set as 0.98. Both

hardware cost and software cost are uniformly

and randomly generated in the range from 1 to

99. The cost function is given in Equation 3.

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

129

Cost = 100 *[
𝐻𝑊𝑐𝑜𝑠𝑡

𝑎𝑙𝑙 𝐻𝑊𝑐𝑜𝑠𝑡
+

𝑆𝑊𝑐𝑜𝑠𝑡

𝑎𝑙𝑙 𝑆𝑊𝑐𝑜𝑠𝑡
+

𝑃𝑊𝑐𝑜𝑠𝑡

𝑎𝑙𝑙 𝑃𝑊𝑐𝑜𝑠𝑡
] (3)

Where

HWcost is the hardware implementation cost of particle

SWcost is the software implementation cost of particle

PW cost is the power implementation cost of particle

allHWcost is the total of hardware implementation cost of all particle allSWcost is the total of software

implementation cost of all particle

allPWcost is the total of power implementation cost of all particle in both software and hardware

Since the node value must be 0 or 1 for a binary

problem, the particles were rounded by using

hard decision rounding (HDR). a node is

mapped to hardware if the node value is lower

than 0.5 and mapped to software if node value

is greater than 0.5.

GA, crossover probability (Pc) is set to 0.9 and

mutation probability (Pm) is set to 0.1. C1 and

C2 for velocity equation were set to 2 and W

was set to 1. Damping value is set to 0.97 for

the PSO. Number of particle = 512 Population

size = 60 Maximum iterations = 500

Fitness Proportionate Selection method

was adopted for this research because of its

simplicity and fastness for large number of

particles. A random number R between 0 and 1

is chosen. Last individual whose accumulated

normalized value is smaller than R was

selected.

Heuristic Crossover method was also used

for this work. This operator creates one child

offspring from two parents. The child gene was

obtained using Equation 4.

O1 = P1 + R (P2 – P1)1 = 𝑃1 + 𝑅 (𝑃2 − 𝑃1) (4)

Where

O1 is the child gene

P1 and P2 is parent genes

R is a random number between 0 and 1

And finally uniform mutation was

applied for mutation operator. This was used to

replace the original value of the chosen gene

with a uniform random value generated

between lower and upper boundary for the

gene.

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

130

5.0 Results and Discussion

Figure 5: Cost versus Iteration graph of first simulation

The figure above shows the cost versus

iteration graph of first simulation. Three

algorithms, GA, GA-PSO and GA-GA-PSO

were plotted on the graph to show the

iterations needed to achieve the best cost. The

best cost was said to be reach when the cost is

not changing for 450 consecutive iterations.

The GA cost keeps changing even after 450

iterations therefore the best cost cannot be

determined. The algorithm was not stable to

reach the best cost in fewer than 450 iterations.

Therefore, the data will not take into

consideration. the two level GA-PSO, on the

other hand became stable after 260 iterations

and the three level GA-GA-PSO was the

lowest among the three algorithms and was

stable after just 30 iterations, as such it has the

best cost. Also, the GA-GA-PSO is able to

provide solution with exact value of 0s and 1s

while GA algorithm and GA-PSO algorithm

show decimal values. The time needed was

then calculated from the number of iterations

to know the algorithm efficiency using the

following formula.

t = Ttotal ×
𝒊𝒕𝒆𝒓𝒂𝒕𝒊𝒐𝒏

𝟓𝟎𝟎

However, since random particles were used in

the simulation, the total time needed is slightly

different for each simulation. Hence, 10 trials of

the simulations were carried out and the

average was taken. The result of 10 simulations

were recorded in table 1 and 2. The averaged

value was used for comparison and discussion.

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

131

Table 1: Result from GA-PSO algorithm

Trial Number of Iteration Total time needed (s)

1 260 5.3113

2 319 5.4610

3 172 3.8159

4 398 7.7873

5 300 5.0115

6 340 7.1647

7 313 6.5724

8 299 6.1977

9 386 8.1843

10 266 5.5137

Average 6.1020

From table 1. the average time needed to reach

the best cost is 6.1020s. The GA-PSO algorithm

is more efficient and stable than GA algorithm

alone and require less time to reach the best cost

when compared to GA.

Table 2: Result from GA-GA-PSO algorithm

Trial Number of Iteration Total time needed (s)

1 30 1.1254

2 21 0.7100

3 15 0.6149

4 25 0.9702

5 15 0.5203

6 23 0.9236

7 21 0.8727

8 16 0.6687

9 12 0.4960

10 23 0.9102

Average 0.7812

From table 2. The time needed to reach the best

cost for three level hybrid GA-GA-PSO model

is 0.7812s. And is the lowest among the three

algorithms.

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

132

Figure 3. Cost versus iteration for 450 nodes

Figure 3 also shows the cost versus iterations

graph of the three algorithms was plotted on the

graph and it was seen that the GA-GAP-SO has

a smooth graph with few iterations to achieve

the minimum cost. The number of iterations to

reach the best cost is approximately 12-31

iterations.

Figure 4. Cost versus number of nodes

Figure 4 shows the cost versus the number of

nodes for the three algorithms. From this graph,

the GAPSO performs better than GA when the

number of nodes is less than 450. If the number

of nodes is more than 450, then GA performs

better than GAPSO. From the graph also

GAGAPSO performs better than GA and

GAPSO for all nodes.

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for

Embedded System

133

Figure 5. Improvement versus number of nodes

Figure 5 is the plot of percentages of

improvement in terms of the minimum cost for

GA-GA-PSO over GAPSO and GA-PSO over

GA. It was observed from the graph that the

maximum improvement of GA-GA-PSO over

GA-PSO, is at 450 nodes, with an improvement

of 6.3%. After 450 nodes, the improvement of

GA-GA-PSO slightly decrease. And for GA-

PSO over GA, the maximum improvement was

achieved at the 100th node with improvement

at approximately 3%. When the number of

nodes continuously increase, the performance

of GA-PSO also decrease.

5.1 Comparison between algorithms

The GA algorithm was excluded from this

comparison because it was not able to give its

best cost within 450 iterations. Therefore, it can

be concluded that GA algorithm is unstable and

require longest time to reach best cost.

Table 3: Result comparison between 3 algorithms

The average time needed for GA-PSO algorithm

to reach best cost was obtained to be 6.1020s

while that for GA-GA-PSO algorithm to reach

best cost is 0.7812s. The average time needed for

GA-GA-PSO is much lower compared to GA-

PSO algorithm and have lower best cost value

and computational time. Its solution also consist

of exact value of 1s and 0s. Moreover the GA-

GA-PSO algorithm also provides better solution

for optimization, compared to GA-PSO

algorithm and GA algorithm.

6.0 Conclusion

A three-level hybrid GA-GA-PSO algorithm that

combines the advantages of successive

algorithms into a single model has been designed

for software hardware partitioning using

MATLAB. This algorithm used shorter iteration

to obtain stable cost compared to GA and hybrid

GA-PSO algorithm. It also obtains the lowest

cost compared to single and two level hybrid

algorithms. It also proved to have better average

execution time to reach best cost.. The slope was

smoother and iterations to achieve best cost was

also shorter.

.

Algorithm Average time needed (s)

GA -

GA-PSO 6.1020

GA-PSO-GA 0.7812

http://www.fanefanejournal.com/

Fane-Fane Int’l Multidisciplinary Journal, Vol. 6, NO.2, December, 2022 www.fanefanejournal.com

Comparative Evaluation and Analysis of Hardware/Software Partitioning Algorithms for Embedded

System

134

7.0 References:

 Tiong Reng Xian, Zaini Abdul Halim, Ching Chia

Leong, Tan Jiunn Gim

“Hardware-software partitioning using three-level

hybrid algorithm for system-on-chip platform”

Bulletin of Electrical Engineering and Informatics Vol.

10, No. 1, February 2021, pp. 466~473 ISSN:

2302-9285, DOI: 10.11591/eei.v10i1.2201

Mohamed b Abdelhalim, A.E. Salama, Serag E. D.

Habib. Hardware Software Partitioning using

Particle Swarm Optimization Technique. Conference

paper from System-on-Chip for Real-Time

Applications, the 6th International Workshop.

Source: IEEE Xplore. DOI:

10.1109/IWSOC.2006.348234

Imene Mhadhbi, Slim Ben Othman, and Slim Ben Saoud

(2016). An Efficient Technique for

Hardware/Software Partitioning Process in

Codesign. Scientific Programming Volume

2016 (2016),

Article ID 6382765, 11 pages.

dx.doi.org/10.1155/2016/6382765

Marrec, P. L., Valderrama, C., Hessel, F., Jerraya, A.,

Attia, M., & Cayrol, O. (n.d.). Hardware,

software and mechanical cosimulation for

automotive applications. Proceedings. Ninth

International Workshop on Rapid System

Prototyping (Cat. No.98TB100237).

doi:10.1109/iwrsp.1998.676692

B., M., & Habib, S. E. (2009). Particle Swarm

Optimization for HW/SW Partitioning. Particle

Swarm Optimization. doi:10.5772/6740

Binh, N. N., Imai, M., Shiomi, A., & Hikichi, N. (1996).

A hardware/software partitioning algorithm for

designing pipelined ASIPs with least gate

counts. 33rd Design Automation Conference

Proceedings, 1996.

doi:10.1109/dac.1996.545632

J. Madsen, J Gorde, P. V. Knudsen, M. E. Petersen, A.

Haxthausen (1997). "LYCOS: The Lyngby

cosynthesis system", Design Automation of

embedded Systems, vol. 2, no. 2, pp. 195-236,

April 1997.

Z. A. Mann (2004). "Partitioning algorithms for

Hardware/Software Co-design", 2004.

J. Henkel, R. Ernst (2001) "An approach to

automated hardware/software

partitioning using a flexible granularity

that is driven by high-level estimation

techniques", IEEE Transactions on Very

Large Scale Integration (VLSI)

Systems, vol. 9, no. 2, pp. 273-289,

2001.

J. Kennedy and R. Eberhart. "Particle swarm

optimization," Neural Networks, 1995.

Proceedings., IEEE

International Conference on, Perth, WA, 1995,

pp. 1942-1948 vol.4. doi:

10.1109/ICNN.1995.488968

Eberhart, R., & Kennedy, J. (1995, October). A

new optimizer using particle swarm

theory. In Micro Machine and Human

Science, 1995. MHS'95., Proceedings of

the Sixth International Symposium on

(pp. 39-43). IEEE.

Shi, Y. (2001). Particle swarm optimization:

developments, applications and

resources. In evolutionary computation,

2001. Proceedings of the 2001 Congress

on (Vol. 1, pp. 81-86). IEEE.

G.Li, J.Feng, C.Wang, J.Wang.

Hardware/Software Partitioning

Algorithm Based on the Combination of

Genetic Algorithm and Tabu Search,

2015. Engineering Review, Vol 34,

Issue 2, pg 151-160.

R.Hassan, B.Cohanum, O.Weck A Comparison

of Particle Swarm Optimization and The

Genetic Algorithm, 2005. 46th

AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics &

Material Conference.
doi:10.2514/6.2005-1897

Erik D. Goodman Introduction to Genetic

Algorithms, 2011. GECCO ’11

Proceedings of the 13th annual

conference companion on Genetic and

evolutionary computation on (pg.839-

860).

T.Blickle, L.Thiele A comparison of Selection

Schemes used in Genetic Algorithms,

1995. TLK-Report Second Edition.

A.J. Unbarkar, P.D. Sheth Crossover Operators

in Genetic Algorithms: A Review, 2015.

ICTACT Journal on Soft Computing,

Vol 06, Issue 1, pg 1083-1092.

Introduction to Genetic Algorithms, Part XI

Crossover and Mutation, 1998.

Retrieved from:

http://www.obitko.com/tutorials/genetic-

algorithms/crossover-mutation.php

http://www.fanefanejournal.com/
http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php
http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php
http://www.obitko.com/tutorials/genetic-algorithms/crossover-mutation.php

