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Abstract 

In this current investigation, we introduce a mathematical framework to describe the behavior of non-

Newtonian blood flow in a non-Darcy porous medium under the influence of a magnetic field, heat source, 

and Joule effect. The magnetic field is uniformly oriented perpendicular to the porous surface. To tackle 

the governing nonlinear partial differential equations, we employ the explicit finite difference method 

(FDM) for numerical solution. We delve into the impact of several crucial parameters, including the 

Reynolds number, hydro-magnetic parameter, Forchheimer parameter, Darcie parameter, Prandtl number, 

Eckert number, heat source parameter, and Schmidt number. Through the visualization of graphical 

representations, we analyze how these parameters affect the velocity, temperature, and concentration 

profiles. This research holds practical relevance in fields such as surgical procedures, industrial materials 

processing, and diverse heat transfer applications. 
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1.0 introduction 

The circulation of blood within arteries represents 

a fundamental physiological phenomenon, 

drawing significant interest from the biomedical 

research community, physiologists, and 

clinicians. An intriguing facet of this 

phenomenon is the alteration in blood flow 

characteristics induced by the application of an 

external magnetic field, a topic that has become a 

focal point of intensive research in recent 

years.The roots of mathematical modeling in bio-

fluid engineering, particularly in the context of 

heat transfer, can be traced back to the late 1940s 

when Pennes (1984) published a seminal paper 

laying the groundwork for understanding 

conduction heat transfer within tissue. The study 

of pulsatile fluid flow coupled with heat transfer 

has manifold applications, particularly within the 

realms of mechanical and industrial thermal 

engineering systems.Baish (1990) delved into the 

intricacies of heat transport within countercurrent 

blood vessels, even in the presence of arbitrary 

pressure gradients. Meanwhile, Consiglieri et al. 

(2003) and Davalos et al. (2003) engaged in 

comprehensive theoretical examinations of the 

heat convection coefficient within large blood 

vessels. Shrivastava et al. (2005) conducted an 

analytical investigation of heat transfer within 

finite tissue, considering the presence of two 

blood vessels and uniform Dirichlet boundary 

conditions.All of these investigations were 

limited to the realm of Newtonian blood flow 

models. While numerous studies have explored 

Newtonian models grounded in the Navier-

Stokes equations, it is essential to acknowledge 

the rheological properties inherent in biological 

fluids like blood, plasma, and bile. Developing a 

non-Newtonian model is imperative to enhance 

the accuracy of results in the study of 

physiological fluids.Given the pulsatile nature of 

blood circulation driven by the heart's pumping 

action in the human system, it becomes crucial to 

account for this characteristic. Skalak and Chien 

(1982) conducted a study examining non-

Newtonian blood flow, specifically considering 

erythrocytes as soft tissues. For a comprehensive 

overview of various rheological models 

pertaining to blood, Cokelet (1972) has provided 

an excellent summary. 

        In the mid-1980s, engineers began exploring 

the impact of magnetic fields on blood flow. 

Their primary objectives were to harness the 

principles of magneto-hydrodynamics (MHD) to 

regulate blood flow velocities during surgical 

procedures and to investigate the consequences of 

magnetic fields on blood circulation, particularly 

concerning astronauts and individuals residing 

near electromagnetic (EM) towers.The presence 

of iron oxides within the hemoglobin molecule, 

as demonstrated by Takeuchi et al. (1995), has 

been revealed to impart robust magnetic 

properties to blood. In oxygenated conditions, 

blood exhibits diamagnetic characteristics, while 

in deoxygenated states, it behaves as a 

paramagnetic fluid. Numerous studies have also 

addressed the topic of heat transfer within bio-

magnetic fluid flows. Notable examples include 

the work of Tzirtzilakis and Tanoudis (2003), 

which examined bio-magnetic convective heat 

transfer over a stretching surface, and the research 

conducted by Louckopoulos and Tzirtzilakis 

(2004) on bio-magnetic flow and heat transfer in 

a parallel-plate system. 

 

         The inclusion of a porous medium in the 

context of fluid flow introduces a more physically 

realistic dimension to the study. This approach 

finds applicability in modeling phenomena within 

blood vessels and pulmonary systems, where 

factors like fatty deposits and artery blockages 

come into play. Typically, the Darcy model is the 

most commonly employed framework for 

representing porous conditions. However, under 

conditions characterized by higher pressure 

gradients and highly porous regimes where 

inertial effects outweigh viscous effects, the 

Darcie model proves inadequate. Khaled and 

Vafai (2003) provided a comprehensive overview 
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of applications involving heat and fluid dynamics 

in porous (biological) media. Ogulu and Amos 

(2007) delved into the effects of temporally-

varying wall mass flux in hydro magnetic 

pulsatile Newtonian blood flow within a Darcie 

porous model of the cardiovascular system. They 

utilized a regular perturbation technique to 

investigate this phenomenon. This model has 

been used in various studies related to heat 

transfer in porous media, as elucidated by Pop 

and Ingham (2001). Notable contributions in this 

domain include the work of Preziosi and Farina 

(2002), who explored mass exchange using an 

extended Darcy model, and Vankan et al. (1997), 

who considered non-Darcy transport in blood-

perfused tissue. Additionally, Sorek and Sideman 

(1986) analyzed blood flow in cardiac vessels 

using a Darcy-Forchheimer model. Recent 

research by Bhargava et al. (2007) employed the 

Darcy-Forchheimer model to investigate 

pulsating magneto-hydrodynamic blood flow and 

species diffusion within a porous medium 

channel. Of note, Joule dissipation plays a critical 

role as a volumetric heat source, garnering 

practical interest due to its relevance in various 

industrial applications. In a recent study, Sharma 

et al. (2013) delved into the intricacies of heat and 

mass transfer in a magnetic bio fluid flow through 

a non-Darcie porous medium, considering the 

Joule effect. 

            The aforementioned studies did not 

account for the influence of heat sources or sinks. 

However, recent pilot research suggests that the 

moisture content of the skin may alter the 

response of vascular endothelial cells to local 

heat, as demonstrated by KcLellan et al. (2009). 

In these investigations, it was observed that when 

the skin was kept dry during warming, the skin's 

blood flow response was notably smaller 

compared to when moist heat was utilized as the 

heating source (KcLellan et al., 2009). Existing 

literature provides some support for this notion. 

Petrofsky et al. (2009) proposed that the 

increased blood flow response observed in the 

skin might be attributed to the presence of 

moisture in the heat source, the faster rate of 

temperature increase in the skin, or a combination 

of both factors.In the realm of heat and mass 

transfer, Kandasamy et al. (2005) discussed these 

effects along a wedge with a heat source and 

concentration, while considering the first-order 

chemical reaction and the presence of 

suction/injection. Additionally, Sharma et al. 

(2007, 2008, 2011) explored various aspects of 

magneto hydrodynamic (MHD) free convective 

flow past an infinite vertical porous plate, 

including heat source/sink effects. Chambkha 

(2004) investigated unsteady MHD convective 

heat and mass transfer past a semi-infinite vertical 

permeable moving plate with heat absorption. 

Furthermore, Sharma et al. (2007, 2008, 2011) 

examined radiation effects in a free convective 

flow along a uniform moving porous vertical 

plate in the presence of a heat source/sink and 

transverse magnetic field.In a recent study, 

Sharma et al. (2014) explored the Soret and 

DuFour effects in an unsteady MHD mixed 

convective flow past an infinite vertical plate, 

considering Omics dissipation and heat source 

effects. Consequently, the primary aim of the 

present investigation is to examine biological 

fluid flow with heat and mass transfer considering 

its pulsatile hydro-magnetic rheological nature 

under the presence of viscous dissipation, Joule 

heating and a finite heat source through a Darcian 

porous medium. 

 

2. Mathematical formulation 

We examine the dynamics of an unsteady two-

dimensional rheological bio-fluid flowing 

through a narrow channel in the presence of a 

porous medium. This fluid experiences viscous 

dissipation, Joule dissipation, and heat source 

effects. The channel consists of plates separated 

by a distance of 2H, where wall transpiration 

effects occur. The flow exhibits a pulsatile nature 

similar to blood circulation in the human 

cardiovascular system, driven by the heart's 
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pumping action. The source parameter accounts 

for the influence of real pistons. Additionally, a 

transverse magnetic field (B0) is applied due to 

the bio-fluid's electrical properties.The porous 

medium is non-Darcian, and wall transpiration 

results in injection at (-H) and suction at (H). The 

energy equation incorporates Joule dissipation 

and heat source/sink terms. The bio-fluid is non-

Newtonian, requiring the use of the Nakamura-

Sawada model tailored for such fluids. 

Furthermore, the mass conservation equation 

considers the concentration C1 at the lower plate 

(-H) and C2 at the upper plate (H). In summary, 

these assumptions lead to the following system of 

governing equations. 

Linear momentum equation 

∂u
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Concentration equation. 

𝝏𝑪𝑰
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𝝏𝒚
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The corresponding boundary condition are   

Y=-H;  U=0; T= 1T  
IC = IC ; 

Y=-H; U=0; 2TT  ; 2CC I   

Here's a revised version of the provided 

information: In the context of this study, the 

following parameters and variables are defined 

μB: Newtonian dynamic viscosity of the bio-

fluid: Wall transpiration velocity, with V = Vo at 

the lower plate and V = -Vo at the upper plate.β: 

Upper limit of the apparent viscosity 

coefficient’s: Longitudinal velocity component: 

Hydrodynamic pressure.kp: Hydraulic 

conductivity (permeability) of the porous 

material’s: Density of the fluid: Horkheimer 

coefficient associated with the porous medium 

geometry: Dimensional time: Electrical 

conductivity of the bio-fluid.B0: Strength of the 

transverse magnetic field.α: Thermal 

diffusivity’s: Specific heat capacity of the bio-

fluid’s: Source parameter: Temperature of the 

bio-fluid: Concentration of a species’: Mass 

diffusivity of the species’/∂x: Longitudinal 

pressure gradient. 

Introducing the following non-dimensional parameters. 
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Equation (2.1) to (2.3) are reduced to the following non-dimensional 

Momentum equation  
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The transformed boundary conditions become: 

Y=-1: U=0; 0=-1 C=-1 

Y=1   U=0; 0=1; C=1 )7.2(  

In this context, we define the following dimensionless parameters and variables: 

X: Dimensionless coordinate parallel to the bio-

fluid flow. Y: Dimensionless coordinate 

transverse to the bio-fluid flow. U: Dimensionless 

transformed velocity component in the X-

direction. P: Dimensionless transformed 

hydrodynamic pressure (omitted for analytical 

convenience).t: Dimensionless time. θ: 

Dimensionless temperature. Re: Dimensionless 

transpiration Reynolds number. Nm: 

Hydromagnetic parameter. λ: Darci an parameter 

representing permeability. Nf: Forchheimer 

parameter, characterizing quadratic porous drag. 

Tm: Characteristic temperature, defined as the 

average of T1 and T2.Cm: Characteristic 

concentration, calculated as the average of C1 

and C2.Pr: Prandtl number. Ec: Eckert Number. 

Sc: Schmidt number. S: Dimensionless source 

parameter. Given that the fluid flow in this 

problem exhibits a pulsatile nature, we 

decompose the pressure gradient component into 

both a steady component and an oscillatory 

component, as follows: 
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First to solve the above equation (2.4) -(2.5) complied equation the pressure is redefined as. 

 .0 twCOSPP
x

p
S 




  

Were SP the static pressure component, 0P  the oscillatory pressure component. 

Method of solution  

The nonlinear dimensionless partial differential equations described above, along with their associated 

boundary conditions, were numerically solved using the Explicit Finite Difference Technique. The finite 

difference equations corresponding to Eqs (2.4) to (2.6) are provided below: 
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To derive the difference equations, the flow 

region is discretized into a grid or mesh consisting 

of lines aligned parallel to the Y and t axes. These 

mesh lines intersect at points known as nodes, 

where solutions for the difference equations are 

calculated. At each internal nodal point within a 

specific level (n), the finite-difference equations 

form a tri-diagonal system of equations. Solving 

these equations is achieved through the utilization 

of the Thomas algorithm (Hoffman, 1992). To 

establish the convergence of the finite difference 

scheme, computations are performed with slight 

variations in ΔY and Δt. During this process, 

negligible changes are observed in the values of 

u, T, and C. Additionally, after each iteration 

cycle, convergence checks are conducted to 

ensure that the convergence criterion is met at all 

points. Consequently, due to considerations of 

computational cost and accuracy, the chosen 

mesh size is deemed optimal. 

4. Results and discussion 

In the preceding sections, we have examined the 

characteristics of non-Newtonian bio-fluid flow 

in a non-Darcy porous medium influenced by 

hydro magnetism, heat source effects, and Joule 

heating. To gain a deeper understanding of this 

phenomenon, we conducted numerical 

simulations to analyses the distribution of 

velocity, temperature, and concentration across a 

range of dimensionless parameters. It’s worth 

noting that the bio-fluid under consideration is 

blood, and we have adopted parameter values 

consistent with those found in the work of Sharma 

et al. (2013). To assess the precision of our 

results, we have carried out comparisons against 

established benchmarks. Comparisons have been 

conducted with the findings of Rawat et al. 

(2009), and the results are presented in Table 1. 

Remarkably, a strong concurrence is evident 

between both investigations, particularly in terms 

of the dimensionless velocity profile (U) 

concerning the transverse coordinate (Y). 

Table 1. Comparison of present study and Rawat et al. (2009) 

 

.21Pr,1096,3.0,002.0,5,7,10Pr,8,4,5.0Re 0  EcNmNFP   

 

                                                   U (at t=0.5) 

 

Y Rawat et al (2022) Present study. 

-1 0 0 
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-0.658554 0.477407 0.477453 

-0.31707 0.792337 0.792369 

 0.31707 0.866090 0.866126 

 0.658537 0.572876 0.572933 

 1 0 0 

 

 

Figure 1 illustrates the velocity profile at t=0.5 for various Reynolds number (Re) values. Notably, as the 

Reynolds number involves the transpiration velocity, an increase in Re corresponds to higher velocity (U) 

values, typically causing the peaks to shift towards the right. It's worth mentioning that a Reynolds number 

of unities signifies a creeping flow regime, where the inertial core found in higher-velocity porous flows 

has not yet formed, a concept discussed by Dibbs and Edwards (1984). In Figure 2, we examine the impact 

of the non-Newtonian parameter on the velocity profile. Lower values of this parameter indicate higher 

viscosity and consequently lower velocity values. Conversely, as this parameter increases, velocity also 

rises, and the peak velocity approaches its maximum as the parameter approaches infinity Figure 3 

demonstrates the influence of the Darcy parameter (λ) on velocity profiles. Higher values of λ suggest 

reduced fatty deposits and obstructions within the fluid flow channel, resulting in lower resistance and 

higher velocities. The effects of the hydromagnetic parameter (Nm) are depicted in Figure 4. Increasing 

values of Nm lead to a downward shift in the velocity parabola. This phenomenon can be attributed to the 

retarding forces, specifically Lorentz forces, generated by the magnetic field, given the bio-fluid's 

established electrical properties. Such magnetic fields hold significant practical utility in regulating blood 

flows. 
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 Fig.1. U versus Y for various transpiration Reynolds           Fig.2. U versus Y for various non-               

 Newtonian   numbers (Re) at t = 0.5.                                                parameter values (β) at t = 0.5.  

 

  
  

Fig.3. U versus Y for various Darci an parameter            Fig.4. U versus Y for various hydromagnetic           

values (λ) at t = 0.5.                                                               parameter values (Nm) at t = 0.5.  

In Fig.5, The temperature is shown to be 

influenced by the hydro-magnetic parameter 

(Nm) at two Ec levels. It has been previously 

established that Nm inhibits temperature because 

of the Joule dissipation term in Eq. (2.4). At 

increasing Ec values, the Joule dissipation term 

plays the role of a volumetric heat source and 

gains importance. Figure 5a shows that 

temperature peaks diminish as Nm increases, 

whereas Figure 5b shows that bigger temperature 

values and more heat generation are produced by 

higher Ec values, which also cause an increase in 

oscillations because of the oscillatory character of 

the velocity profile. Fig. 6 displays the impact of 
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the Prandtl number (Pr) on the temperature 

distribution for two distinct values of Ec. The 

ratio of heat diffusivity to momentum diffusivity 

is denoted by Pr. Momentum will diffuse more 

quickly in larger Pr fluids (Pr >1) than in heat. 

The numerical results indicate that when  the 

Prandtl number increases, the temperature falls. 

This is because the thermal boundary layer 

thickness decreases when a fluid with a high 

Prandtl number has a relatively low thermal 

conductivity. 

              

Fig.5. θ versus Y for various hydromagnetic parameter values (Nm) at t = 0.5 for two Eckert numbers (a) 

Ec=0.0006 (b) Ec=0.006. 

 

Nomenclature  

  

  Α – thermal diffusivity  

  B0 – transverse magnetic field strength   

b – Forchheimer coefficient   related 

to the porous medium geometry  

  C – species concentration  

            c1 – characteristic concentration  

                      cp – specific heat capacity of the 

bio-fluid  

          D – mass diffusivity of the species     

   

Ec   – Eckert number  

   

  

                    kp – hydraulic conductivity    

     (permeability) of the porous material  

 Nf – Forchheimer (quadratic porous drag) 

parameter/ number  

  Nm – hydro-magnetic parameter  

  P – hydrodynamic pressure  

 P* – transformed hydrodynamic pressure (* 

dropped for convenience in the analysis)  

  Ps – steady component of pressure gradient  

  P0 – oscillatory pressure component  

  PR – Prandtl number  

  Re – transpiration Reynolds number  

S – heat source parameter  

  Sc – Schmidt number  
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T – bio-fluid temperature  

T T12 – characteristic temperature  

t – dimensionless time  

U – transformed velocity component in the 

X-direction  

u – x - direction (longitudinal 

velocity)  

  Vo – wall transpiration velocity (V = Vo at the 

lower plate and V = -Vo at the upper plate)  

X – dimensionless coordinate parallel to 

the bio-fluid flow  

Y – dimensionless coordinate transverse 

to the bio-fluid flow  

    – upper limit of the apparent viscosity 

coefficient= rheological parameter (β)  

  – dimensionless temperature  

                           – Darci an (permeability) 

parameter  

  B – Newtonian dynamic viscosity  

   – density of the fluid  

    – electrical conductivity of the bio-fluid  

    – dimensional time  

    – dimensionless angular frequency  

  P X – longitudinal pressure gradient  
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