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Abstract 
Wind energy prediction is a crucial and dynamic area within the renewable energy sector. As renewable 
energy sources are integrated into existing power grids alongside traditional sources, accurately forecasting 
energy production is essential for minimizing operational costs and ensuring safe grid operation. In this 
context, we present a comparative and comprehensive study of various machine learning techniques, 
including artificial neural networks, support vector regression, random trees, and random forest, examining 
the advantages and disadvantages of each method. To verify the efficiency of the considered models, actual 

measurements from wind turbines located in France, Turkey, and a dataset from Japan were used. We detail 
a step-by-step process encompassing feature engineering, metric selection, model selection, and 
hyperparameter tuning. We evaluate the models using specific metrics, providing a summary of optimal 
results and discussing. This research aims to bridge the gap between academic studies and practical business 
applications, offering detailed architectures and hyperparameters to guide wind energy professionals. 
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Introduction. 
The increasing reliance on renewable energy 
sources has created a demand for accurate and 
reliable methods to forecast energy production. 
Among these sources, wind energy plays a 
significant role due to its abundance and 
sustainability. However, the intermittent nature 
of wind poses challenges for integrating wind 
energy into existing power grids, which also 
utilize traditional energy sources. Accurate wind 
energy prediction is crucial for optimizing 
operational costs, enhancing grid stability, and 
ensuring efficient energy management. Machine 
learning techniques offer promising solutions for 
improving wind energy forecasting. By 
leveraging historical data and advanced 
algorithms, these techniques can provide more 
precise and reliable predictions. This study 
focuses on a comparative analysis of various 
machine learning methods, including artificial 
neural networks, support vector regression, 
random trees, and random forest, to identify the 
most effective approaches for wind energy 
prediction. 

To verify the efficiency of the considered models, 
actual measurements from wind turbines located 
in France, Turkey, and a dataset from Japan were 
used. This framework guides the entire process, 
from understanding the business problem to 
deploying the final model. By detailing each step, 
including feature engineering, metric selection, 
model selection, and hyperparameter tuning, this 
research aims to offer a comprehensive guide for 
practitioners in the wind energy sector. 

Through rigorous evaluation of the models using 
specific metrics, the study highlights the optimal 
results and explores the trade-offs between 
performance and resource expenditure. The 
findings aim to bridge the gap between academic 
research and real-world applications, providing 
practical insights and detailed model 

architectures to support wind energy 
professionals in their decision-making processes.  

Investments in renewable energy are projected to 
reach $230 billion over the next five years 
(Willuhn, 2019). In the United States, energy 
consumption in residential and commercial 
buildings accounts for approximately 39% of the 
total and is expected to increase to 45.52% by 
2035 (U.S. Department of Energy, 2011), while 
in the European Union, it represents about 40% 
of total consumption (European Parliament, 
2018). Efforts to transition to renewable energy 
include not only utilizing green resources but also 
promoting responsible electricity consumption, 
such as DeepMind AI's HVAC recommendation 
system, which achieved a 40% reduction in 
cooling energy for Google's server rooms (Evans 
& Gao, 2016). 

From 2021 to 2030, the European Commission's 
2030 climate and energy framework aims for at 
least a 40% reduction in greenhouse gas 
emissions (from 1990 levels), a renewable energy 
share of at least 32%, and a 32.5% improvement 
in energy efficiency (European Parliament, 
2018). The amount of wind energy generated 
depends on the size and number of windmills and 
their geographic locations, with initial energy 
predictions based on site-specific attributes like 
altitude, latitude, longitude, air pressure, date, 
and weather. Predictability is crucial in the 
energy sector, and accurate wind energy forecasts 
can significantly enhance the adoption of wind 
energy, addressing the non-stationary nature of 
wind patterns and bridging the gap between 
academic research and industry challenges. 

Literature Review 

The European Commission's ambitious targets 
for greenhouse gas emissions reduction, 
renewable energy share, and energy efficiency 
improvement are well-documented in the 
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literature (European Parliament, 2018). Studies 
have highlighted the complex factors influencing 
wind energy production, including the size and 
location of wind turbines (Ramsay & van Dijk, 
2016). Initial predictions of wind energy output 
based on site attributes such as altitude, latitude, 
and weather conditions have been explored in 
research focused on renewable energy 
forecasting (Makridakis et al., 2020). 

Predictability in energy production is a 
fundamental concern in the energy industry, with 
research emphasizing the importance of accurate 
forecasts for efficient resource allocation and 
management (Weron, 2014). The non-stationary 
nature of wind patterns poses challenges for 
prediction models, necessitating advanced 
techniques to improve forecast accuracy 
(Inyongo et al., 2018). 

This comparative study contributes to the existing 
literature by offering a detailed analysis of 
machine learning techniques for wind energy 
forecasting, providing insights into model 
selection, hyperparameter tuning, and 
performance evaluation (Gao et al., 2019). By 
bridging the gap between academic research and 
practical industry applications, this research aims 
to enhance the adoption of wind energy on a 
larger scale, aligning with the European 
Commission's renewable energy goals and 
addressing the challenges faced by energy 
professionals (Gao et al., 2019). 

n statistical modeling, specific assumptions must 
be met before beginning the modeling process, 
which can sometimes conflict with the non-
stationary nature of wind patterns. Artificial 
Neural Networks (ANN), Regression Trees (RT), 
Random Forest (RF), and Support Vector 
Regression (SVR) are utilized for nonlinear 
modeling tasks like wind energy prediction. SVR, 
unlike other models that minimize errors over 
training data, aims to minimize the upper bound 

of expected risk by including as many data points 
as possible within a precise error interval, known 
as structural risk minimization (Prada & 
Dorronsoro, 2015). Techniques such as wavelet 
transformation and orthogonal testing are 
employed to enhance the accuracy of SVR and 
RF models in predicting wind energy output and 
addressing grid disruptions caused by production 
fluctuations. (Liu et al., 2016). 

This research underscores the significance of 
carefully choosing input data and analyzing the 
subject from correlation and feature importance 
perspectives to model only those features that 
contribute meaningful information to the problem 
at hand (Wang, Sun, Sun, & Wang, 2017). 
Artificial Neural Networks (ANNs) find wide 
applicability in wind energy applications such as 
pattern detection, forecasting, monitoring, 
control, and design optimization. Selecting 
appropriate independent variables is crucial for 
accurate predictions, balancing the complexity of 
the phenomena being studied with the risk of 
including unnecessary variables that could 
diminish advantages. Including more variables 
increases data requirements, potentially affecting 
generalization, leading to overfitting or 
underfitting, and escalating training time and 
computational demands. Techniques like 
Principal Component Analysis (PCA) aid in 
reducing variable numbers while retaining 
essential information (He & Liu, 2012). 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) have gained 
significant attention and success in the field of 
wind power prediction due to their ability to 
model complex nonlinear relationships and 
handle large volumes of data effectively. Several 
studies have explored the application of ANNs in 
wind power prediction. For instance, Zeng et al. 
(2018) developed an ANN-based model for short-
term wind power forecasting, achieving high 
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accuracy by incorporating meteorological data 
and historical power generation records. In 
another study, Huang et al. (2019) investigated 
the use of hybrid models combining ANNs with 
other techniques like wavelet transform and 
support vector regression for long-term wind 
power prediction. Their results demonstrated 
improved forecasting accuracy compared to 
standalone models. 

The versatility of ANNs in wind power prediction 
extends to various aspects such as pattern 
detection, forecasting horizons, and optimization 
of wind farm operations. Wang et al. (2020) 
utilized ANNs for anomaly detection in wind 
turbine operations, effectively identifying and 
diagnosing faults to improve maintenance 
strategies and overall efficiency. Furthermore, 
ANNs have been employed in optimizing wind 
farm layouts and turbine placements to maximize 

energy output. Zhang et al. (2021) utilized ANN-
based optimization algorithms to determine the 
optimal arrangement of turbines in a wind farm, 
considering factors like wind speed, terrain, and 
wake effects. 

In a neural network, the basic processing unit is 
called a neuron. Each neuron receives inputs from 
other neurons within the network or from external 
sources via the input layer, and it computes an 
output. Illustrated in Figure 2, each input is 
associated with a weight (𝑤𝑖), where weight 
values reflect the significance of each input. The 
neuron applies a function f to the weighted sum 
of the inputs (𝑥𝑖). Additionally, a bias term can be 
included in the neuron, represented as 'bi'. The 
output of the neuron is then calculated as: 

 𝑦 =  𝑓(𝑤𝑖𝑥𝑖 + 𝑏𝑖).  (1) 

 

 

 

 

   

Fig. 1. Multi-layer neural network 

 

 

 

 

Fig. 2. Neuron perception. 

The activation function is crucial in introducing 
non-linearity to the output neuron in neural 
networks, which is essential for handling non-

linear relationships often encountered in real-
world data applications. A common example is 
the step function, where the output is 1 if the 
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weighted sum plus bias is greater than or equal to 
a threshold τ, and 0 otherwise. This function is 

represented as y = f(w*x + b), where τ represents 

the threshold. 

The learning process in Artificial Neural 
Networks (ANNs) involves adjusting the 
synaptic weights during training to minimize the 
difference between predicted and actual values. 
This optimization is guided by a cost function, 
also referred to as a "loss" or "error" function, 
depending on the literature used. 

Support Vector Machines (SVM) 

The principle of support vector machines (SVM) 
is both sophisticated and straightforward to 
implement. SVM employs the structural risk 
minimization inductive principle to achieve 
effective generalization even with limited data 
(Smola & Schölkopf, 2004). SVM is capable of 
addressing both classification and regression 
problems, sharing common theoretical 
foundations to a certain extent. Support Vector 
Regression (SVR) is a variant of SVM that 
specifically handles regression tasks. Unlike 
linear regression or feedforward neural networks 
(FFNN) that aim to minimize error, SVR aims to 
confine the error within a predetermined 
threshold (Basak, Pal, Ch, & Patranabis, 2007). 
This characteristic makes SVR challenging in 
terms of selecting the appropriate decision 
boundary. The optimal fit is achieved when the 
maximum number of data points lies within these 
boundaries. Significant effort is required to 
determine the placement of the decision boundary 
and to set the distances ε and −𝜖 from the 
hyperplane so that the data points closest to the 
hyperplane are within these boundaries, as 
illustrated in Figure 3. 

 

Fig. 3. SVR hyperplane and decision boundaries. 

For a given dataset divided into training and 
testing subsets, the training pairs are 
(x1,y1),(x2,y2),(x3,y3),…,(xi,yi)⊆X×R where X is 
the input space for instances x∈Rd  and i=1,2,…,n 

(Taylor, 2020). The function f(x) must deviate no 
more than ϵ\epsilonϵ from the hyperplane and 
should be as flat as possible. For a linear function: 

𝑓(𝑥) = 𝑤𝑥 + 𝑏  
   
 (2) 

Where,   𝑤 ∈ 𝑋,

𝑏 ∈ 𝑅  

Seeking 
to minimize w 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝑤‖2 

with associated constraints   
𝑦 − (𝑤𝑖𝑥𝑖) −  𝑏 ≤ 𝜖     
   (3) 

𝑦 − (𝑤𝑖𝑥𝑖 ) +  𝑏 ≤ 𝜖    
   (4) 

However, this represents the ideal case. When 

errors exceed the boundaries—that is, errors 
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larger than ϵ—slack variables 𝛾 and 𝛾∗ are 

introduced in the optimization process. 

Regression Trees. 

Regression trees are a type of decision tree that is 
used for predicting continuous variables. They 
are an essential tool in the field of machine 
learning and statistical modeling, providing an 
interpretable and robust method for making 
predictions based on input data. This literature 
review explores the foundational concepts, 
applications, and recent advancements in 
regression trees (Taylor, 2020). 

Regression trees operate by recursively 
partitioning the data space into regions that are 
homogeneous with respect to the target variable. 
The algorithm selects splits that minimize the 
sum of squared deviations from the mean in each 
resulting region, thereby creating a tree structure 
where each leaf node represents a predicted value 
for the target variable. This method, initially 
introduced by Breiman et al. (1984) in the 
seminal work on Classification and Regression 
Trees (CART), has been widely adopted due to 
its simplicity and effectiveness. 

The construction of a regression tree involves 
several steps: 

 Splitting Criteria: The choice of 
splitting criteria is crucial. The most 
common criterion is the reduction in 
variance, where splits are chosen to 
maximize the reduction in the sum of 
squared errors (SSE) within the child 
nodes compared to the parent node. 

 Pruning: To avoid overfitting, trees are 
often pruned using techniques such as 
cost-complexity pruning, which balances 
the tree's complexity against its 

predictive performance on validation 
data. 

 Handling Missing Values: Regression 
trees handle missing values by either 
imputing them based on surrogate splits 
or using a probabilistic approach to 
distribute the cases with missing values 
across multiple branches. 

Regression trees remain a powerful and versatile 
tool in predictive modeling. Their interpretability 
and ability to handle complex interactions among 
variables make them a valuable asset in various 
fields. The development of ensemble methods 
has further enhanced their predictive capabilities, 
ensuring their continued relevance in the 
evolving landscape of machine learning. 

Random Forest  

Random Forest (RF) is an ensemble model 

composed of multiple decision tree models. Each 

tree in the RF is trained on a randomly selected 

subset of the data and makes its own prediction. 

The overall prediction of the RF model is the 

average of the predictions made by all the 

individual trees, resulting in higher accuracy 

compared to single decision trees (Breiman, 

2001). The process of selecting random samples 

with replacement, known as bootstrapping, helps 

in understanding the bias and variance of the 

model (Kotsiantis, 2011). Bagging, or bootstrap 

aggregation, combines predictions from different 

trees based on different bootstrap samples to 

improve accuracy. In supervised learning, 

selecting the optimal subset of variables is crucial 

as it reduces model complexity, enhances 

generalization, and decreases training time and 

computational power (Ben Ishak, 2016). A key 

parameter in RF is the number of decision trees 

that make up the ensemble. 
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Fig. 5. Random Forest. 

 

Out-of-bag error (OBE) is akin to cross-

validation as it averages the predictions made on 

data not used during training. 

OBE = 
𝟏

𝒏
∑ (𝒚𝒊 − 𝒚̂𝒊)𝟐𝒏

𝒊=𝟏  (5) 

where 𝑦̂𝑖is the predicted value. 

Variable importance is assessed by randomly 

permuting a feature across multiple trees and 

calculating the difference between the OBE after 

each permutation and the original OBE. If the 

error increases compared to the original OBE, the 

feature is deemed important for the analysis. Both 

regression trees and random forests are sensitive 

to the data on which they are trained. 

The methodology  

The methodology employed for data mining is 
from wind turbines located in France, Turkey, 
and a dataset from Japan were used. This 
methodology consists of the following main 
steps: business understanding, data 
understanding, data preparation, modeling, 
evaluation, and deployment. 

1. Business Understanding: This initial 
step focuses on identifying and 
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comprehending the project objectives 
and defining the problem in detail. The 
specifics of this phase are discussed in 
the Introduction. 

2. Data Understanding: This step involves 
the entire process of data collection and 
exploratory data analysis. By the end of 
this step, the researcher will have 
assessed whether the available data is of 
sufficient quality and quantity to 
proceed. 

Data preparation is the most time-consuming part 

of data mining, taking up about 70% of the effort. 

This involves transforming raw data into a form 

suitable for predictive modeling by merging data 

from different sources, identifying and correcting 

outliers and missing values, and performing 

feature engineering and normalization. 

Problematic data are addressed to ensure optimal 

data quality. Feature engineering included 

creating new variables with time stamps. 

Categorical encoding increased the number of 

variables to 60, and multicollinearity issues led to 

the removal of highly correlated variables. Some 

variables were dropped due to their redundancy. 

This phase concludes with data optimization, 

leading into the modeling step. 

In the case of wind energy prediction, several 

methods were considered based on the problem 

statement and relevant research. Support Vector 

Regression (SVR), Regression Trees (RT), 

Random Forest (RF), and Artificial Neural 

Networks (ANNs) were selected for this task. 

Optimization of the number of folds (k) used for 

cross-validation determined that k=3 provided a 

balance between performance and training time. 

Model evaluation, which compares results to 

select the best technical solution, focused on 

assessing the models' ability to generalize using 

testing data. The evaluation metrics chosen were 

the coefficient of determination (R²), mean 

absolute error (MAE), and root mean squared 

error (RMSE). The best-performing model from 

this process is then deployed in production. 

R2 =1 -  
𝐸𝑆𝑆

𝑇𝑆𝑆
   (6) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖=1  (7) 

  𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦̂𝑖|𝑛

𝑖=1      (8) 

where 

y = observed value, 𝑦̂𝑖 = ith 
estimated value, and 

n = number of 
observations.
  

Results 

The study evaluated selected models for 

predicting wind energy production using metrics 

like coefficient of determination (R²), Mean 

Absolute Error (MAE), Root Mean Squared Error 

(RMSE), and training time. The analysis 

considered hardware constraints and optimization 

to choose the best model. Overall, Artificial 

Neural Networks (ANN) showed flexibility, 

while Support Vector Regression (SVR), 

Regression Trees (RT), and Random Forest (RF) 

offered comprehensive performance metrics. 

The flexibility in parameter selection for models 

like Artificial Neural Networks (ANN) has 

positive and negative aspects. ANN performed 

the best in capturing the phenomenon under 

review, closely followed by Random Forest (RF) 

and Support Vector Regression (SVR). However, 

this flexibility leads to longer training times and 

increased computational power for parameter 

optimization. Despite this, training time doesn't 

impact timely predictions due to the short 

prediction horizon. When considering trade-offs 

between performance, complexity, and training 
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time, ANN's significantly smaller Mean Absolute 

Error (MAE) compared to RF, SVR, and 

Regression Trees (RT) highlights its superior 

predictive accuracy. 

Table 1. Hyperparameter combinations. 

Algorithms Best Hyperparameter 
SVM 𝛾 = 0.00001, 𝐶 = 4, 
Regression 
tree 

𝛼 = 1 
Min leaf = 2 
Min sample = 3 
Min split = rondom 

Random 
forest 

Min leaf = 2 
Min sample = 3 

Number of tree = 1573 
ANN batch size = 5, 

epochs = 110, 
no. of layer = 152, 
no. of hidden layers = 20, 
w. initialization = Xavier Uniform, 
activation = RELU, 
optimization = Adam 

Table 2. Performance metrics 

Algorithms R-square MAE RMSE 
SVM 0.863 2.083 1.643 
Regression tree 0/924 1.874 1.964 
Random forest 0.756 2.140 2.139 
ANN 0.814 1.092 0.782 

Comparing R² and training time for algorithms, 

and comparing MAE and RMSE for algorithms. 

In terms of performance, Artificial Neural 
Networks (ANN) can achieve benchmark results 
for real-world business scenarios. However, 
practitioners may face challenges related to data 
quality and availability, making reliable data like 
that from Open Power System Data valuable. In 
cases requiring quick predictions within a short 
time horizon, training time could be a critical 
factor in selecting the model. Nonetheless, 
applying these findings to different data mining 
projects may not always be considered valid. 

Conclusion 
This study using the actual measurements from 

wind turbines located in France, Turkey, and a 

dataset from Japan were used framework 

provides insights for wind energy forecasting. 

While well-tuned ANNs offer accurate 

predictions, they require significant resources. 

Tree-based models offer transparency, and SVR 

could be a balanced choice. Strategies like energy 

storage can mitigate prediction errors. Running 

multiple ML algorithms for different prediction 

horizons supports decision-making. Accurate 

predictions are crucial for optimizing renewable 

energy integration and transitioning efficiently 

from traditional sources. 
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